My DBLP webpage - My Google Scholar webpage
Ph.D. Thesis • Book • International Journals • International Conferences • International Workshops • French Conferences • Reports • Misc.
HDR (in french, Habilitation à Diriger des Recherches)
Avancées en théorie PAC-Bayésienne : de bornes en généralisation à des algorithmes d'apprentissage supervisé et de transfert
Advances in PAC-Bayesian theory from generalization bounds to supervised and transfer learning algorithms
HDR committee: Marianne Clausel (reviewer), Stéphane Chrétien (chair, examiner), Colin De La Higuera (reviewer), Rémi Emonet (examiner), François Jacquenet (tutor), Liva Ralaivola (reviewer)
Defense date: April 7, 2025.
[pdf] [bibtex] [slides]
Ph.D. Thesis (in french)
-
Apprentissage de vote de majorité pour la classification supervisée et l’adaptation de domaine : approches PAC-Bayésiennes et combinaison de similarités
Learning Majority Vote for Supervised Classification and Domain Adaptation: PAC-Bayesian Approaches and Similarity Combination
PhD committee: Stéphane Ayache (co-advisor), Antoine Cornuéjols (chair, examiner), Rémi Gilleron (examiner), Amaury Habrard (advisor), Mario Marchand (reviewer), Liva Ralaivola (examiner), Michèle Sebag (reviewer).
Defense date: September 18, 2013.
Ph.D. award 2013 from Aix-Marseille University
A runner-up award of the "Prix de thèse de l'AFIA 2014"
[pdf] [bibtex] [slides]
Book
Domain Adaptation Theory: Available Theoretical Results
Ievgen Redko ; Emilie Morvant ; Amaury Habrard ; Marc Sebban ; Younès Bennani
ISTE Press-Elsevier, 2019, ISBN : 9781785482366
[publisher's website] [bibtex] [short version - ArXiV]
International Journals
-
A General Framework for the Practical Disintegration of PAC-Bayesian Bounds
Paul Viallard ; Pascal Germain ; Amaury Habrard ; Emilie Morvant
Machine Learning Journal (MLJ), 113:519–604, 2024, DOI : 10.1007/s10994-023-06391-0 (presented also at ECML-PKDD 2023)
[published version] [research report arXiv:2102.08649] [bibtex]
-
Metric Learning from Imbalanced Data with Generalization Guarantees
Léo Gautheron ; Amaury Habrard ; Emilie Morvant ; Marc Sebban
Pattern Recognition Letters (PRL), 133:298-304, 2020, DOI : 10.1016/j.patrec.2020.03.008
[published version] [bibtex]
-
PAC-Bayes and Domain Adaptation
Pascal Germain ; Amaury Habrard ; François Laviolette ; Emilie Morvant
Neurocomputing, 379:379-397, 2020, DOI : 10.1016/j.neucom.2019.10.105
[pdf] [published version] [bibtex]
-
Multiview Boosting by Controlling the Diversity and the Accuracy of View-specific Voters
Anil Goyal ; Emilie Morvant ; Pascal Germain ; Massih-Reza Amini
Neurocomputing, 358:81-92, 2019, DOI : 10.1016/j.neucom.2019.04.072
[pdf] [published version][bibtex]
-
Risk Upper Bounds for General Ensemble Methods with an application to Multiclass Classification
François Laviolette, Emilie Morvant, Liva Ralaivola, Jean-Francis Roy
Neurocomputing, 219:15-25, 2017, DOI: 10.1016/j.neucom.2016.09.016
[pdf] [published version] [bibtex]
-
Domain Adaptation of Weighted Majority Votes via Perturbed Variation-Based Self-Labeling
Emilie Morvant
Pattern Recognition Letters (PRL), 51(0):37–43, 2015, DOI: 10.1016/j.patrec.2014.08.013
[pdf] [published version] [bibtex]
-
Learning A Priori Constrained Weighted Majority Votes
Aurélien Bellet ; Amaury Habrard ; Emilie Morvant ; Marc Sebban
Machine Learning Journal (MLJ), 97(1-2):129-154, 2014, DOI: 10.1007/s10994-014-5462-z
[pdf] [published version] [bibtex]
-
Parsimonious Unsupervised and Semi-Supervised Domain Adaptation with Good Similarity Functions
Emilie Morvant ; Amaury Habrard ; Stéphane Ayache
Knowledge and Information Systems (KAIS), 33(2):309-349, 2012, DOI: 10.1007/s10115-012-0516-7
[pdf] [published version] [bibtex]
International Conferences
-
A Theoretically Grounded Extension of Universal Attacks from the Attacker's Viewpoint
Jordan Patracone ; Paul Viallard ; Emilie Morvant ; Gilles Gasso ; Amaury Habrard ; Stéphane Canu
European Conference on Machine Learning & Principles and Pratice of Knowledge Discovery in Databases (ECML-PKDD), 2024
[research report]
-
Leveraging PAC-Bayes Theory and Gibbs Distributions for Generalization Bounds with Complexity Measures
Paul Viallard ; Rémi Emonet ; Amaury Habrard ; Emilie Morvant ; Valentina Zantedeschi
International Conference on Artificial Intelligence and Statistics (AISTATS), 2024
[pdf] [code]
-
Learning Stochastic Majority Votes by Minimizing a PAC-Bayes Generalization Bound
Valentina Zantedeschi ; Paul Viallard ; Emilie Morvant ; Rémi Emonet ; Amaury Habrard ; Pascal Germain ; Benjamin Guedj
Conference on Neural Information Processing Systems (NeurIPS), 2021
[pdf] [code]
-
A PAC-Bayes Analysis of Adversarial Robustness
Guillaume Vidot ; Paul Viallard ; Amaury Habrard ; Emilie Morvant
Conference on Neural Information Processing Systems (NeurIPS), 2021
[pdf] [code]
-
Self-Bounding Majority Vote Learning Algorithms by the Direct Minimization of a Tight PAC-Bayesian C-Bound
Paul Viallard ; Pascal Germain ; Amaury Habrard ; Emilie Morvant
European Conference on Machine Learning & Principles and Pratice of Knowledge Discovery in Databases (ECML-PKDD), 2021
[pdf] [bibtex]
-
Landmark-based Ensemble Learning with Random Fourier Features and Gradient Boosting
Léo Gautheron ; Pascal Germain ; Amaury Habrard ; Guillaume Metzler ; Emilie Morvant ; Marc Sebban ; Valentina Zantedeschi
European Conference on Machine Learning & Principles and Pratice of Knowledge Discovery in Databases (ECML-PKDD), 2020
[pdf] [bibtex]
-
Metric Learning from Imbalanced Data
Léo Gautheron ; Amaury Habrard ; Emilie Morvant ; Marc Sebban
The IEEE International Conference on Tools with Artificial Intelligence (ICTAI), 2019, Portland, Oregon, USA
[pdf] [bibtex]
-
Pseudo-Bayesian Learning with Kernel Fourier Transform as Prior
Gaël Letarte ; Emilie Morvant ; Pascal Germain
International Conference on Artificial Intelligence and Statistics (AISTATS), 2019, Naha, Okinawa, Japan
[pdf][bibtex][research report arXiv:1810.12683]
-
Multiview Learning of Weighted Majority Vote by Bregman Divergence Minimization
Anil Goyal ; Emilie Morvant ; Massih-Reza Amini
International Symposium on Intelligent Data Analysis (IDA), 2018, 's-Hertogenbosch, the Netherlands
[pdf][bibtex]
-
PAC-Bayesian Analysis for a two-step Hierarchical Mutliview Learning Approach
Anil Goyal ; Emilie Morvant ; Pascal Germain ; Massih-Reza Amini
European Conference on Machine Learning & Principles and Pratice of Knowledge Discovery in Databases (ECML-PKDD), 2017, Skopje, Macedonia
[pdf][bibtex][research report arXiv:1606.07240]
-
A New PAC-Bayesian Perspective on Domain Adaptation
Pascal Germain ; Amaury Habrard ; François Laviolette ; Emilie Morvant
International Conference on Machine Learning (ICML), 2016, New York, USA
[pdf][bibtex][research report arXiv:1506.04573] [video] [DALC code] [extended journal version]
-
Multilabel Structured Output Learning with Random Spanning Trees of Max-Margin Markov Networks
Mario Marchand ; Su Hongyu ; Emilie Morvant ; Juho Rousu ; John Shawe-Taylor
Neural Information Processing Systems (NIPS), 2014, Montréal, Canada
[pdf] [bibtex]
-
A PAC-Bayesian Approach for Domain Adaptation with Specialization to Linear Classifiers
Pascal Germain ; Amaury Habrard ; François Laviolette ; Emilie Morvant
International Conference on Machine Learning (ICML), 2013, Atlanta, USA
[pdf] [bibtex] [video] [PBDA code] [extended version]
-
The Multi-Task Learning View of Multimodal Data
Hachem Kadri ; Stéphane Ayache ; Cécile Capponi ; Sokol Koço ; François-Xavier Dupé ; Emilie Morvant
Asian Conference on Machine Learning (ACML), 2013, Canberra, Australia
[pdf] [bibtex]
-
PAC-Bayesian Generalization Bound on Confusion Matrix for Multi-Class Classification
Emilie Morvant ; Sokol Koço ; Liva Ralaivola
International Conference on Machine Learning (ICML), 2012, Edinburgh, United Kingdom. pp. 815-822
[pdf] [bibtex] [video] [research report arXiv:1202.6228]
-
Sparse Domain Adaptation in Projection Spaces based on Good Similarity Functions
Emilie Morvant ; Amaury Habrard; Stéphane Ayache IEEE International Conference on Data Mining series (ICDM), 2011, Vancouver, Canada. IEEE Computer Society, pp. 457-466
Selected as one of the best papers for possible publication in Knowledge and Information Systems (KAIS).
[pdf] [bibtex]
International Workshops
Published
-
Majority Vote of Diverse Classifiers for Late Fusion
Emilie Morvant ; Amaury Habrard ; Stéphane Ayache
IAPR Joint International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR), 2014, Joensuu, Finland. pp. 153-162
[pdf] [bibtex] [research report arXiv:1207.1019]
-
On the Usefulness of Similarity Based Projection Spaces for Transfer Learning
Emilie Morvant ; Amaury Habrard ; Stéphane Ayache
First International Workshop on Similarity-Based Pattern Recognition, 2011, Venise, Italy. pp. 1-16
Organized by the EU FP7 Project SIMBAD
[pdf] [bibtex] [video]
Benchmarks
-
VideoSense at TRECVID 2011: Semantic Indexing from Light Similarity Functions-based Domain Adaptation with Stacking
Emilie Morvant; Stéphane Ayache; Amaury Habrard; Miriam Redi; Tanase Claudiu; Bernard Merialdo; Bahjat Safadi; Franck Thollard; Nadia Derbas; Georges Quenot
TRECVID Workshop participants notebook papers, NIST, 2012
[pdf] [bibtex]
Not Published
-
Interpreting Neural Networks as Majority Votes through the PAC-Bayesian Theory
Paul Viallard ; Rémi Emonet ; Pascal Germain ; Amaury Habrard ; Emilie Morvant
NeurIPS 2019 Workshop on Machine Learning with guarantees, Vancouver, Canada.
[pdf]
-
A New PAC-Bayesian View of Domain Adaptation
Pascal Germain ; François Laviolette ; Amaury Habrard ; Emilie Morvant
NIPS 2015 Workshop on Transfer and Multi-Task Learning: Trends and New Perspectives, Montréal, Canada.
[research report arXiv:1506.04573] [DALC code]
Finalized version published at ICML'16 [bibtex] -
On Generalizing the C-Bound to the Multiclass and Multi-label Settings
François Laviolette ; Emilie Morvant ; Liva Ralaivola ; Jean-Francis Roy
NIPS 2014 Workshop on Representation and Learning Methods for Complex Outputs , Montréal, Canada.
[pdf] [research report arXiv:1408.1336] -
An Improvement to the Domain Adaptation Bound in a PAC-Bayesian context
Pascal Germain ; François Laviolette ; Amaury Habrard ; Emilie Morvant
NIPS 2014 Workshop on Transfer and Multi-task learning: Theory Meets Practice, Montréal, Canada.
[pdf] [research report arXiv:1503.06944] -
Domain Adaptation of Majority Votes via Perturbed Variation-based Label transfer
Emilie Morvant
NIPS 2013 Workshop New Directions in Transfer and Multi-Task: Learning Across Domains and Tasks, Lake Tahoe, Nevada, United States.
[pdf]
Finalized version published in PRL [bibtex]
-
PAC-Bayesian Approach for Domain Adaptation with Specialization to Linear Classifiers
Emilie Morvant (Pascal Germain ; Amaury Habrard ; François Laviolette)
Women in Machine Learning workshop (WiML 2013), Lake Tahoe, Nevada, United States.
Presentation of our ICML'13 paper
-
PAC-Bayesian Learning and Domain Adaptation
Pascal Germain ; Amaury Habrard ; François Laviolette ; Emilie Morvant
NIPS 2012 Workshop Multi-trade-off in Machine Learning, Lake Tahoe, Nevada, United States.
[pdf] [poster]
Finalized version published at ICML'13 [bibtex] [video]
-
Generalization of the C-bound to Multiclass Setting
Emilie Morvant (François Laviolette ; Liva Ralaivola ; Jean-Francis Roy)
Women in Machine Learning workshop (WiML 2012), Lake Tahoe, Nevada, United States.
-
Sparse Domain Adaptation in a Good Similarity-Based Projection Space
Emilie Morvant ; Amaury Habrard ; Stéphane Ayache
NIPS 2011 Domain Adaptation Workshop, Sierra Nevada, Spain.
[pdf] [poster]
Finalized version published at ICDM'11 [bibtex]
French Conferences
-
Une borne PAC-Bayésienne sur une mesure de risque pour l'apprentissage équitable
Hind Atbir ; Farah Cherfaoui ; Guillaume Metzler ; Emilie Morvant ; Paul Viallard
French Conference on Machine Learning (CAp 2022), 2022
-
Intérêt des bornes désintégrées pour la généralisation avec des mesures de complexité
Paul Viallard ; Rémi Emonet ; Pascal Germain ; Amaury Habrard ; Emilie Morvant ; Valentina Zantedeschi
French Conference on Machine Learning (CAp 2022), 2022
-
Learning Stochastic Majority Votes by Minimizing a PAC-Bayes Generalization Bound
Valentina Zantedeschi ; Paul Viallard ; Emilie Morvant ; Rémi Emonet ; Amaury Habrard ; Pascal Germain ; Benjamin Guedj
French Conference on Machine Learning (CAp 2022), 2022
[pdf, published at NeurIPS 21]
-
Apprentissage de Vote de Majorité par Minimisation d’une C-Borne
Paul Viallard ; Emilie Morvant ; Pascal Germain
French Conference on Machine Learning (CAp 2021), 2021
-
Dérandomisation des Bornes PAC-Bayésiennes
Paul Viallard ; Emilie Morvant ; Pascal Germain
French Conference on Machine Learning (CAp 2021), 2021
-
Une Analyse PAC-Bayésienne de la Robustesse Adversariale
Guillaume Vidot ; Paul Viallard ; Emilie Morvant
French Conference on Machine Learning (CAp 2021), 2021
-
Théorie PAC-Bayésienne pour l'apprentissage en deux étapes de réseaux de neurones
Paul Viallard ; Rémi Emonet ; Amaury Habrard ; Emilie Morvant; Pascal Germain
French Conference on Machine Learning (CAp 2020), 2020
-
Apprentissage d'ensemble basé sur des points de repère avec des caractéristiques de Fourier aléatoires et un renforcement du gradient
Léo Gautheron ; Pascal Germain ; Amaury Habrard ; Guillaume Metzler ; Emilie Morvant ; Marc Sebban ; Valentina Zantedeschi French Conference on Machine Learning (CAp 2020), 2020
-
Revisite des "random Fourier features" basée sur l'apprentissage PAC-Bayésien via des points d'intérêts
Léo Gautheron, Pascal Germain, Amaury Habrard, Gaël Letarte, Emilie Morvant, Marc Sebban, Valentina Zantedeschi
French Conference on Machine Learning (CAp 2019), 2019, Toulouse, France.
-
Apprentissage d’un vote de majorité hiérarchique pour l’apprentissage multivue
Anil Goyal, Emilie Morvant, Massih-Reza Amini
French Conference on Machine Learning (CAp 2018), 2018, Rouen, France.
-
Apprentissage de métrique pour la classification supervisée de données déséquilibrées
Léo Gautheron ; Amaury Habrard ; Emilie Morvant ; Marc Sebban
French Conference on Machine Learning (CAp 2018), 2018, Rouen, France.
-
Une borne PAC-Bayésienne en espérance et son extension à l'apprentissage multivues
Anil Goyal, Emilie Morvant, Pascal Germain
French Conference on Machine Learning (CAp 2017), 2017, Grenoble, France.
-
Théorèmes PAC-Bayésiens pour l'apprentissage multi-vues
Anil Goyal, Emilie Morvant, Pascal Germain, Massih-Reza Amini
French Conference on Machine Learning (CAp 2016), 2016, Marseille, France.
-
Adaptation de domaine de vote de majorité par auto-étiquetage non itératif
Emilie Morvant
French Conference on Machine Learning (CAp 2014), 2014, Saint-Etienne, France. pp. 49-58
[pdf]
English version published in PRL [bibtex]
-
Une analyse PAC-Bayésienne de l’adaptation de domaine et sa spécialisation aux classifieurs linéaires
Pascal Germain ; Amaury Habrard ; François Laviolette ; Emilie Morvant
French Conference on Machine Learning (CAp 2013), 2013, Lille, France.
[pdf] [PBDA code]
English version published at ICML'13 [bibtex]
-
Vote de majorité a priori contraint pour la classification binaire : spécification au cas des plus proches voisins.
Aurélien Bellet ; Amaury Habrard ; Emilie Morvant ; Marc Sebban
French Conference on Machine Learning (CAp 2013), 2013, Lille, France.
[pdf]
English version published in MLJ [bibtex]
-
Étude de la généralisation de DASF à l'adaptation de domaine semi-supervisée
Emilie Morvant ; Amaury Habrard ; Stéphane Ayache
French Conference on Machine Learning (CAp 2012), 2012, Nancy, France. pp. 111-126
[pdf]
English version published in KAIS [bibtex]
-
Adaptation de domaine parcimonieuse par pondération de bonnes fonctions de similarité
Emilie Morvant ; Stéphane Ayache ; Amaury Habrard
French Conference on Machine Learning (CAp 2011), 2011, Chambéry, France. pp. 295-310
[pdf]
English version published at ICDM'11 [bibtex]
Research Reports --- not (yet) published
-
PAC-Bayesian Theorems for Domain Adaptation with Specialization to Linear Classifiers (2015)
Pascal Germain ; Amaury Habrard ; François Laviolette ; Emilie Morvant
[research report arXiv:1503.06944]
Extended version of our ICML'13 paper
Miscellaneous
-
Proceedings of The 38th Annual Workshop of the Austrian Association for Pattern Recognition (ÖAGM), 2014
Vladimir Kolmogorov ; Christoph Lampert ; Emilie Morvant ; Rustem Takhanov
[proceedings] [website of the conference]
-
Flexible Domain Adaptation for Multimedia Indexing (Best Poster Award, presentation of a part of my ICDM'11 paper)
Emilie Morvant ; Amaury Habrard ; Stéphane Ayache
Poster presentation at ENS/INRIA Computer Vision and Machine Learning Summer School, 2011.
[poster]