• Who am I? • Research Interests • Supervision • Teaching • Bibliography • Activities • Talks • Misc •
Who am I?
Since October 2014, I am an assistant professor (maître de conférences) at University Jean Monnet of Saint-Etienne (France). I work at Hubert Curien Laboratory in the Data Intelligence team. I am in charge of the 2nd year of BSc in Computer Science since July 2015.From October 2013 to September 2014, I was a postdoctoral researcher at the IST Austria (Institute of Science and Technology Austria) in the Christoph Lampert Group (Computer Vision and Machine Learning).
I obtained my Ph.D. in computer science (machine learning) at the Laboratoire d'Informatique Fondamentale (LIF) of Marseille in the Qarma group, under the direction of Amaury Habrard and Stéphane Ayache. The main objective of my thesis was to study the learning of majority vote for supervised classification and domain adaptation. This work was supported by the ANR project VideoSense. I was also a member of PASCAL2 Network of Excellence.
Research Interests (current)
Machine Learning
|
Research Projects
|
Supervision
PostDoc
Marie-Ange Lebre --- Deep Learning for detection and classification of microorganism (since September 2022, co-supervised with A. Habrard and R. Emonet)Ph.D. Student
Hind Atbir --- Learning fair and robust kernel-based models with generalization guarantees (from October 2024 to ... , co-supervised with R. Eyraud and F. Cherfaoui)Julien Bastian --- Multiview Fair Learning - From Theory to Algorithms (from October 2024 to ... , co-supervised with C. Largeron and G. Metzler)
Former Ph.D. Students
Paul Viallard --- Beyond PAC-Bayesian Bounds: From Disintegration to Novel Bounds (from September 2019 to December 2022, co-supervised with A. Habrard and P. Germain) --- Now IFSP Inria RennesLéo Gautheron --- Learning Tailored Data Representations from Few Labeled Examples (from October 2017 to December 2020, co-supervised with Pr. A. Habrard and Pr. M. Sebban) --- Now Data Science Engineer at Synapse Défense
Anil Goyal --- Learning a Multiview Weighted Majority Vote Classifier: Using PAC-Bayesian Theory and Boosting (from November 2015 to October 2018, co-supervised with Pr. Massih-Reza Amini) --- Now Lead Data Scientist at Housing.com (India)
Interns
Julien Bastian --- Fairness and domain generalization (Mar-Aug 2024, co-supervised with G. Metzler)Hind Atbir --- PAC-Bayesian Fair Learning (Feb-July 2024, co-supervised with F. Cherfaoui, G. Metzler and P. Viallard)
Mickaël Gault --- Learning fair kernel classifier under constraints (Mar-July 2024, co-supervised with G. Metzler)
Julien Bastian --- Random Fourier Features, PAC-Bayes and Domain Adaptation (Mar-July 2023, co-supervised with G. Metzler)
Alexiane Fraisse --- Random Fourier Features and Domain Adaptation (Apr-July 2022, co-supervised with G. Metzler and P. Viallard)
Luiza Dzhidzhavadze --- A Multiclass C-Bound-Based Algorithm (Apr-June 2021, co-supervised with P. Viallard)
Himanshu Pandey --- A Multiclass C-Bound-Based Algorithm (Apr-June 2021, co-supervised with P. Viallard)
Paul Viallard --- Deep Learning and PAC-Bayes (Feb-June 2019, co-supervised with A. Habrard and R. Emonet)
Omar El-Sabrout --- Active Learning for PAC-Bayesian Domain Adaptation (Mid-April Mid-July 2018)
Loujain Liekah --- Experts Combination (April-June 2018, co-supervised with Dr. M. Soare)
Luc Giffon --- Efficient anomaly detection in data stream (Feb-June 2017, co-supervised with Dr. A. Bonnefoy and Dr. T. Peel)
Arunava Maulik --- (April-June 2017, co-supervised with Pr. A. Habrard and Dr. M. Soare)
Prem Prakash --- (April-June 2017, co-supervised with Pr. A. Habrard)
Léo Gautheron --- Improving the bibliometry platform Labmetry (April-June 2016, co-supervised with Pr. M. Sebban)
Benjamin Sabot --- Empirical study of the C-bound as stopping criterion for neural networks (April-June 2016, co-supervised with Pr. A. Habrard, Dr. P. Germain and D. Fourure)
Soroush Seifi --- A PAC-Bayesian Multiview Study (April-June 2016, co-supervised with Pr. A. Habrard and A. Goyal)
PhD Jurys
2022 Luxin Zhang, Lille (external examinator)2020 Léo Gautheron, St-Etienne (co-supervisor)
2018 Anil Goyal, St-Etienne/Grenoble (co-supervisor)
Teaching
Depuis Juillet 2015, je suis la responsable de la 2ème année de la licence d'informatique. Depuis Juillet 2024, je suis également responsable de la 1ère année de la licence d'informatiqueSince July 2015, I am in charge of the 2nd year of BSc in Computer Science. Since July 2024, I am also in charge of the 1st year of BSc in Computer Science.
S1
L1 - Programmation fonctionnelle - OcamlL2 - Systèmes d'exploitation
L2 - Programmation impérative - C (classique et spécifique alternants)
S2
L2 - Programmation impérative - CL1 - Programmation impérative - python
Old teaching here - Anciens enseignements ici (not up to date)
Bibliography (My DBLP webpage - My Google Scholar webpage)
• Ph.D. Thesis • Book • International Journals • International Conferences • International Workshops • French Conferences • Reports • Misc. •
Ph.D. Thesis (in french)
-
Apprentissage de vote de majorité pour la classification supervisée et l’adaptation de domaine :
approches PAC-Bayésiennes et combinaison de similarités
Learning Majority Vote for Supervised Classification and Domain Adaptation:
PAC-Bayesian Approaches and Similarity Combination
PhD committee: Stéphane Ayache (co-advisor), Antoine Cornuéjols (chair, examiner), Rémi Gilleron (examiner), Amaury Habrard (advisor), Mario Marchand (reviewer), Liva Ralaivola (examiner), Michèle Sebag (reviewer).
Defense date: September 18, 2013.
Ph.D. award 2013 from Aix-Marseille University
A runner-up award of the "Prix de thèse de l'AFIA 2014"
[pdf] [bibtex] [slides] [abstract/related works]
Book
Domain Adaptation Theory: Available Theoretical Results
Ievgen Redko ; Emilie Morvant ; Amaury Habrard ; Marc Sebban ; Younès Bennani
ISTE Press-Elsevier, 2019, ISBN : 9781785482366
[publisher's website] [bibtex] [short version - ArXiV]
International Journals
-
A General Framework for the Practical Disintegration of PAC-Bayesian Bounds
Paul Viallard ; Pascal Germain ; Amaury Habrard ; Emilie Morvant
Machine Learning Journal (MLJ), 113:519–604, 2024, DOI : 10.1007/s10994-023-06391-0 (presented also at ECML-PKDD 2023)
[published version] [research report arXiv:2102.08649] [bibtex]
-
Metric Learning from Imbalanced Data with Generalization Guarantees
Léo Gautheron ; Amaury Habrard ; Emilie Morvant ; Marc Sebban
Pattern Recognition Letters (PRL), 133:298-304, 2020, DOI : 10.1016/j.patrec.2020.03.008
[published version] [bibtex]
-
PAC-Bayes and Domain Adaptation
Pascal Germain ; Amaury Habrard ; François Laviolette ; Emilie Morvant
Neurocomputing, 379:379-397, 2020, DOI : 10.1016/j.neucom.2019.10.105
[pdf] [published version] [bibtex]
-
Multiview Boosting by Controlling the Diversity and the Accuracy of View-specific Voters
Anil Goyal ; Emilie Morvant ; Pascal Germain ; Massih-Reza Amini
Neurocomputing, 358:81-92, 2019, DOI : 10.1016/j.neucom.2019.04.072
[pdf] [published version][bibtex]
-
Risk Upper Bounds for General Ensemble Methods with an application to Multiclass Classification
François Laviolette, Emilie Morvant, Liva Ralaivola, Jean-Francis Roy
Neurocomputing, 219:15-25, 2017, DOI: 10.1016/j.neucom.2016.09.016
[pdf] [published version] [bibtex]
-
Domain Adaptation of Weighted Majority Votes via Perturbed Variation-Based Self-Labeling
Emilie Morvant
Pattern Recognition Letters (PRL), 51(0):37–43, 2015, DOI: 10.1016/j.patrec.2014.08.013
[pdf] [published version] [bibtex]
-
Learning A Priori Constrained Weighted Majority Votes
Aurélien Bellet ; Amaury Habrard ; Emilie Morvant ; Marc Sebban
Machine Learning Journal (MLJ), 97(1-2):129-154, 2014, DOI: 10.1007/s10994-014-5462-z
[pdf] [published version] [bibtex]
-
Parsimonious Unsupervised and Semi-Supervised Domain Adaptation with Good Similarity Functions
Emilie Morvant ; Amaury Habrard ; Stéphane Ayache
Knowledge and Information Systems (KAIS), 33(2):309-349, 2012, DOI: 10.1007/s10115-012-0516-7
[pdf] [published version] [bibtex]
International Conferences
-
A Theoretically Grounded Extension of Universal Attacks from the Attacker's Viewpoint
Jordan Patracone ; Paul Viallard ; Emilie Morvant ; Gilles Gasso ; Amaury Habrard ; Stéphane Canu
European Conference on Machine Learning & Principles and Pratice of Knowledge Discovery in Databases (ECML-PKDD), 2024
[research report]
-
Leveraging PAC-Bayes Theory and Gibbs Distributions for Generalization Bounds with Complexity Measures
Paul Viallard ; Rémi Emonet ; Amaury Habrard ; Emilie Morvant ; Valentina Zantedeschi
International Conference on Artificial Intelligence and Statistics (AISTATS), 2024
[pdf] [code]
-
Learning Stochastic Majority Votes by Minimizing a PAC-Bayes Generalization Bound
Valentina Zantedeschi ; Paul Viallard ; Emilie Morvant ; Rémi Emonet ; Amaury Habrard ; Pascal Germain ; Benjamin Guedj
Conference on Neural Information Processing Systems (NeurIPS), 2021
[pdf] [code]
-
A PAC-Bayes Analysis of Adversarial Robustness
Guillaume Vidot ; Paul Viallard ; Amaury Habrard ; Emilie Morvant
Conference on Neural Information Processing Systems (NeurIPS), 2021
[pdf] [code]
-
Self-Bounding Majority Vote Learning Algorithms by the Direct Minimization of a Tight PAC-Bayesian C-Bound
Paul Viallard ; Pascal Germain ; Amaury Habrard ; Emilie Morvant
European Conference on Machine Learning & Principles and Pratice of Knowledge Discovery in Databases (ECML-PKDD), 2021
[pdf] [bibtex]
-
Landmark-based Ensemble Learning with Random Fourier Features and Gradient Boosting
Léo Gautheron ; Pascal Germain ; Amaury Habrard ; Guillaume Metzler ; Emilie Morvant ; Marc Sebban ; Valentina Zantedeschi
European Conference on Machine Learning & Principles and Pratice of Knowledge Discovery in Databases (ECML-PKDD), 2020
[pdf] [bibtex]
-
Metric Learning from Imbalanced Data
Léo Gautheron ; Amaury Habrard ; Emilie Morvant ; Marc Sebban
The IEEE International Conference on Tools with Artificial Intelligence (ICTAI), 2019, Portland, Oregon, USA
[pdf] [bibtex]
-
Pseudo-Bayesian Learning with Kernel Fourier Transform as Prior
Gaël Letarte ; Emilie Morvant ; Pascal Germain
International Conference on Artificial Intelligence and Statistics (AISTATS), 2019, Naha, Okinawa, Japan
[pdf][bibtex][research report arXiv:1810.12683]
-
Multiview Learning of Weighted Majority Vote by Bregman Divergence Minimization
Anil Goyal ; Emilie Morvant ; Massih-Reza Amini
International Symposium on Intelligent Data Analysis (IDA), 2018, 's-Hertogenbosch, the Netherlands
[pdf][bibtex]
-
PAC-Bayesian Analysis for a two-step Hierarchical Mutliview Learning Approach
Anil Goyal ; Emilie Morvant ; Pascal Germain ; Massih-Reza Amini
European Conference on Machine Learning & Principles and Pratice of Knowledge Discovery in Databases (ECML-PKDD), 2017, Skopje, Macedonia
[pdf][bibtex][research report arXiv:1606.07240]
-
A New PAC-Bayesian Perspective on Domain Adaptation
Pascal Germain ; Amaury Habrard ; François Laviolette ; Emilie Morvant
International Conference on Machine Learning (ICML), 2016, New York, USA
[pdf][bibtex][research report arXiv:1506.04573] [video] [DALC code] [extended journal version]
-
Multilabel Structured Output Learning with Random Spanning Trees of Max-Margin Markov Networks
Mario Marchand ; Su Hongyu ; Emilie Morvant ; Juho Rousu ; John Shawe-Taylor
Neural Information Processing Systems (NIPS), 2014, Montréal, Canada
[pdf] [bibtex]
-
A PAC-Bayesian Approach for Domain Adaptation with Specialization to Linear Classifiers
Pascal Germain ; Amaury Habrard ; François Laviolette ; Emilie Morvant
International Conference on Machine Learning (ICML), 2013, Atlanta, USA
[pdf] [bibtex] [video] [PBDA code] [extended version]
-
The Multi-Task Learning View of Multimodal Data
Hachem Kadri ; Stéphane Ayache ; Cécile Capponi ; Sokol Koço ; François-Xavier Dupé ; Emilie Morvant
Asian Conference on Machine Learning (ACML), 2013, Canberra, Australia
[pdf] [bibtex]
-
PAC-Bayesian Generalization Bound on Confusion Matrix for Multi-Class Classification
Emilie Morvant ; Sokol Koço ; Liva Ralaivola
International Conference on Machine Learning (ICML), 2012, Edinburgh, United Kingdom. pp. 815-822
[pdf] [bibtex] [video] [research report arXiv:1202.6228]
-
Sparse Domain Adaptation in Projection Spaces based on Good Similarity Functions
Emilie Morvant ; Amaury Habrard; Stéphane Ayache IEEE International Conference on Data Mining series (ICDM), 2011, Vancouver, Canada. IEEE Computer Society, pp. 457-466
Selected as one of the best papers for possible publication in Knowledge and Information Systems (KAIS).
[pdf] [bibtex]
International Workshops
Published
-
Majority Vote of Diverse Classifiers for Late Fusion
Emilie Morvant ; Amaury Habrard ; Stéphane Ayache
IAPR Joint International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR), 2014, Joensuu, Finland. pp. 153-162
[pdf] [bibtex] [research report arXiv:1207.1019]
-
On the Usefulness of Similarity Based Projection Spaces for Transfer Learning
Emilie Morvant ; Amaury Habrard ; Stéphane Ayache
First International Workshop on Similarity-Based Pattern Recognition, 2011, Venise, Italy. pp. 1-16
Organized by the EU FP7 Project SIMBAD
[pdf] [bibtex] [video]
Benchmarks
-
VideoSense at TRECVID 2011: Semantic Indexing from Light Similarity Functions-based Domain Adaptation with Stacking
Emilie Morvant; Stéphane Ayache; Amaury Habrard; Miriam Redi; Tanase Claudiu; Bernard Merialdo; Bahjat Safadi; Franck Thollard; Nadia Derbas; Georges Quenot
TRECVID Workshop participants notebook papers, NIST, 2012
[pdf] [bibtex]
Not Published
-
Interpreting Neural Networks as Majority Votes through the PAC-Bayesian Theory
Paul Viallard ; Rémi Emonet ; Pascal Germain ; Amaury Habrard ; Emilie Morvant
NeurIPS 2019 Workshop on Machine Learning with guarantees, Vancouver, Canada.
[pdf]
-
A New PAC-Bayesian View of Domain Adaptation
Pascal Germain ; François Laviolette ; Amaury Habrard ; Emilie Morvant
NIPS 2015 Workshop on Transfer and Multi-Task Learning: Trends and New Perspectives, Montréal, Canada.
[research report arXiv:1506.04573] [DALC code]
Finalized version published at ICML'16 [bibtex] -
On Generalizing the C-Bound to the Multiclass and Multi-label Settings
François Laviolette ; Emilie Morvant ; Liva Ralaivola ; Jean-Francis Roy
NIPS 2014 Workshop on Representation and Learning Methods for Complex Outputs , Montréal, Canada.
[pdf] [research report arXiv:1408.1336] -
An Improvement to the Domain Adaptation Bound in a PAC-Bayesian context
Pascal Germain ; François Laviolette ; Amaury Habrard ; Emilie Morvant
NIPS 2014 Workshop on Transfer and Multi-task learning: Theory Meets Practice, Montréal, Canada.
[pdf] [research report arXiv:1503.06944] -
Domain Adaptation of Majority Votes via Perturbed Variation-based Label transfer
Emilie Morvant
NIPS 2013 Workshop New Directions in Transfer and Multi-Task: Learning Across Domains and Tasks, Lake Tahoe, Nevada, United States.
[pdf]
Finalized version published in PRL [bibtex]
-
PAC-Bayesian Approach for Domain Adaptation with Specialization to Linear Classifiers
Emilie Morvant (Pascal Germain ; Amaury Habrard ; François Laviolette)
Women in Machine Learning workshop (WiML 2013), Lake Tahoe, Nevada, United States.
Presentation of our ICML'13 paper
-
PAC-Bayesian Learning and Domain Adaptation
Pascal Germain ; Amaury Habrard ; François Laviolette ; Emilie Morvant
NIPS 2012 Workshop Multi-trade-off in Machine Learning, Lake Tahoe, Nevada, United States.
[pdf] [poster]
Finalized version published at ICML'13 [bibtex] [video]
-
Generalization of the C-bound to Multiclass Setting
Emilie Morvant (François Laviolette ; Liva Ralaivola ; Jean-Francis Roy)
Women in Machine Learning workshop (WiML 2012), Lake Tahoe, Nevada, United States.
-
Sparse Domain Adaptation in a Good Similarity-Based Projection Space
Emilie Morvant ; Amaury Habrard ; Stéphane Ayache
NIPS 2011 Domain Adaptation Workshop, Sierra Nevada, Spain.
[pdf] [poster]
Finalized version published at ICDM'11 [bibtex]
French Conferences
-
Une borne PAC-Bayésienne sur une mesure de risque pour l'apprentissage équitable
Hind Atbir ; Farah Cherfaoui ; Guillaume Metzler ; Emilie Morvant ; Paul Viallard
French Conference on Machine Learning (CAp 2022), 2022
-
Intérêt des bornes désintégrées pour la généralisation avec des mesures de complexité
Paul Viallard ; Rémi Emonet ; Pascal Germain ; Amaury Habrard ; Emilie Morvant ; Valentina Zantedeschi
French Conference on Machine Learning (CAp 2022), 2022
-
Learning Stochastic Majority Votes by Minimizing a PAC-Bayes Generalization Bound
Valentina Zantedeschi ; Paul Viallard ; Emilie Morvant ; Rémi Emonet ; Amaury Habrard ; Pascal Germain ; Benjamin Guedj
French Conference on Machine Learning (CAp 2022), 2022
[pdf, published at NeurIPS 21]
-
Apprentissage de Vote de Majorité par Minimisation d’une C-Borne
Paul Viallard ; Emilie Morvant ; Pascal Germain
French Conference on Machine Learning (CAp 2021), 2021
-
Dérandomisation des Bornes PAC-Bayésiennes
Paul Viallard ; Emilie Morvant ; Pascal Germain
French Conference on Machine Learning (CAp 2021), 2021
-
Une Analyse PAC-Bayésienne de la Robustesse Adversariale
Guillaume Vidot ; Paul Viallard ; Emilie Morvant
French Conference on Machine Learning (CAp 2021), 2021
-
Théorie PAC-Bayésienne pour l'apprentissage en deux étapes de réseaux de neurones
Paul Viallard ; Rémi Emonet ; Amaury Habrard ; Emilie Morvant; Pascal Germain
French Conference on Machine Learning (CAp 2020), 2020
-
Apprentissage d'ensemble basé sur des points de repère avec des caractéristiques de Fourier aléatoires et un renforcement du gradient
Léo Gautheron ; Pascal Germain ; Amaury Habrard ; Guillaume Metzler ; Emilie Morvant ; Marc Sebban ; Valentina Zantedeschi French Conference on Machine Learning (CAp 2020), 2020
-
Revisite des "random Fourier features" basée sur l'apprentissage PAC-Bayésien via des points d'intérêts
Léo Gautheron, Pascal Germain, Amaury Habrard, Gaël Letarte, Emilie Morvant, Marc Sebban, Valentina Zantedeschi
French Conference on Machine Learning (CAp 2019), 2019, Toulouse, France.
-
Apprentissage d’un vote de majorité hiérarchique pour l’apprentissage multivue
Anil Goyal, Emilie Morvant, Massih-Reza Amini
French Conference on Machine Learning (CAp 2018), 2018, Rouen, France.
-
Apprentissage de métrique pour la classification supervisée de données déséquilibrées
Léo Gautheron ; Amaury Habrard ; Emilie Morvant ; Marc Sebban
French Conference on Machine Learning (CAp 2018), 2018, Rouen, France.
-
Une borne PAC-Bayésienne en espérance et son extension à l'apprentissage multivues
Anil Goyal, Emilie Morvant, Pascal Germain
French Conference on Machine Learning (CAp 2017), 2017, Grenoble, France.
-
Théorèmes PAC-Bayésiens pour l'apprentissage multi-vues
Anil Goyal, Emilie Morvant, Pascal Germain, Massih-Reza Amini
French Conference on Machine Learning (CAp 2016), 2016, Marseille, France.
-
Adaptation de domaine de vote de majorité par auto-étiquetage non itératif
Emilie Morvant
French Conference on Machine Learning (CAp 2014), 2014, Saint-Etienne, France. pp. 49-58
[pdf]
English version published in PRL [bibtex]
-
Une analyse PAC-Bayésienne de l’adaptation de domaine et sa spécialisation aux classifieurs linéaires
Pascal Germain ; Amaury Habrard ; François Laviolette ; Emilie Morvant
French Conference on Machine Learning (CAp 2013), 2013, Lille, France.
[pdf] [PBDA code]
English version published at ICML'13 [bibtex]
-
Vote de majorité a priori contraint pour la classification binaire : spécification au cas des plus proches voisins.
Aurélien Bellet ; Amaury Habrard ; Emilie Morvant ; Marc Sebban
French Conference on Machine Learning (CAp 2013), 2013, Lille, France.
[pdf]
English version published in MLJ [bibtex]
-
Étude de la généralisation de DASF à l'adaptation de domaine semi-supervisée
Emilie Morvant ; Amaury Habrard ; Stéphane Ayache
French Conference on Machine Learning (CAp 2012), 2012, Nancy, France. pp. 111-126
[pdf]
English version published in KAIS [bibtex]
-
Adaptation de domaine parcimonieuse par pondération de bonnes fonctions de similarité
Emilie Morvant ; Stéphane Ayache ; Amaury Habrard
French Conference on Machine Learning (CAp 2011), 2011, Chambéry, France. pp. 295-310
[pdf]
English version published at ICDM'11 [bibtex]
Research Reports --- not (yet) published
-
Generalization Bounds with Arbitrary Complexity Measures
Paul Viallard ; Rémi Emonet ; Amaury Habrard ; Emilie Morvant ; Valentina Zantedeschi
[research report]
-
PAC-Bayesian Theorems for Domain Adaptation with Specialization to Linear Classifiers (2015)
Pascal Germain ; Amaury Habrard ; François Laviolette ; Emilie Morvant
[research report arXiv:1503.06944]
Extended version of our ICML'13 paper
Miscellaneous
-
Proceedings of The 38th Annual Workshop of the Austrian Association for Pattern Recognition (ÖAGM), 2014
Vladimir Kolmogorov ; Christoph Lampert ; Emilie Morvant ; Rustem Takhanov
[proceedings] [website of the conference]
-
Flexible Domain Adaptation for Multimedia Indexing (Best Poster Award, presentation of a part of my ICDM'11 paper)
Emilie Morvant ; Amaury Habrard ; Stéphane Ayache
Poster presentation at ENS/INRIA Computer Vision and Machine Learning Summer School, 2011.
[poster]
Activities
Administration Activities
- 2021-2022: Membre of CNU 27 (French Council of Universities for Computer Science)
- 2019: Board Member of the machine learning and artificial intelligence (MALIA) group of the French association on Statistics (SFdS)
- 2018: "Founding member" of the MALIA group
- 2017-2020: Vice-President (and founding member) of the French Association on Machine Learning (SSFAM)
- 2015-now: Responsible of the 2nd year of BSc in Computer Science
- 2015-now: Member of the board of the Hubert Curien Laboratory
- 2021-now: Member of the equality/parity comittee of the FIL (Commission égalité/parité de la FIL (Fédération Informatique de Lyon)
Member of Organization Committees
- 2022: Publicity chair of ECML-PKDD 2022
- 2019: Demonstration co-chair at ECML-PKDD 2019
- Oct. 2015: Member of the local team of IDA 2015 (International Symposium on Intelligent Data Analysis)
- Sept. 14: Organization of the international workshop on LEarning with Multiple views: Applications to computer vision and multimedia (LEMA, in conjunction with ECML-PKDD 2014), with S. Ayache, M. Cord, and F.-X. Dupé.
- May 14: Organization of the annual conference of the Austrian Association for Pattern Recognition (ÖAGM 2014), with V. Kolomogorov, C. H. Lampert, and R. Takhanov.
Member of Program Committees/Reviewer
- 2022: ECML-PKDD 2022 (as area chair), ICML 2022, CAp 2022
- 2021: ICML 2021, CAp 2021
- 2020: ICML 2020, IDA 2020, CAp 2020
- 2019: ICML 2019, ECML-PKDD 2019, CAp 2019
- 2018: ICML 2018, CAp 2018
- 2017: AISTATS 2017, ICML 2017, NIPS 2017
- 2016: ICML 2016, NIPS 2016, BeyondLabeler, CAp 2016, TASK-CV 2016
- 2015: ICML 2015, TASK-CV 2015
- 2014: ICPRAM 2014, ECAI 2014, ECCV 2014, TASK-CV 2014
- 2013: CAp 2013
- Journals: JMLR, TPAMI, Pattern Recogn. Lett.
Invited talks and Seminaries
- June 19: Journées de Statistique 2019, Nancy, France
When PAC-Bayesian Majority Vote meets Domain Adaptation
- June 18: "Les Universitaires retournent à l'École", Lycée Étienne Mimard, Saint-Etienne, France
Apprentissage Automatique et Adaptation de Domaine
- Feb. 18: MODAL Seminars, INRIA Lille, France
When PAC-Bayesian Majority Vote Meets Transfer Learning [slides]
- Jan. 18: Visit of "Université pour tous" at LaHC, Univ. of Saint-Etienne, France
Presentation of the Data Intelligence Group
andWhat is Domain Adaptation?
- Jan. 16: Visit of students at LaHC, Univ. of Saint-Etienne, France
What is Domain Adaptation? A popularization [slides (in french)]
- Jan. 16: ANR project LIVES workshop, Aix*Marseille Univ., France
PAC-Bayesian Majority Vote & Domain Adaptation
- Feb. 15: Machine Learning Seminars LaHC, Univ. of Saint-Étienne, France
Multilabel Structured Output Learning with A Random Sample of Spanning Trees
- May 14: AMA Seminars, LIG, Grenoble, France
When PAC-Bayes meets Domain Adaptation
- Feb. 14: Machine Learning Seminars LaHC, Univ. of Saint-Étienne, France
Dec. 13: Signal Processing - Machine Learning Seminars LATP/LIF, Aix-Marseille Univ., France
Domain Adaptation of Majority Votes via Perturbed Variation-based Label transfer
- May 13: Lampada Workshop, Porquerolles, France
A PAC-Bayesian Approach for Domain Adaptation
- April 13: IST Austria, Klosterneuburg, Austria
March 13: Xerox Research Center Europe, Grenoble, France
Combining Similarities or Classifiers for Domain Adaptation
- Nov. 12: Signal Processing - Machine Learning Seminars LATP/LIF, Aix-Marseille Univ., France
A Well-founded PAC-Bayesian Majority Vote applied to the Nearest Neighbor Rule
- Aug. 12: GRAAL Seminars, Univ. Laval, Québec, Canada
Unsupervised and Semi-supervised Domain Adaptation with Good Similarity Functions
- June 12: Lampada Workshop, Lille, France
PAC-Bayes Bound and Multiclass Classification
- April 12: VideoSense Meeting, Grenoble, France
From PAC-Bayesian MinCq to Late Classifier Fusion
- March 12: HIIT (Helsinki Institute for Information Technology) Seminars, Espoo, Finland
A General Framework for Domain Adaptation in a Good Similarity-Based Projection Space
- Sept. 11: Signal Processing - Machine Learning Seminars LATP/LIF, Aix-Marseille Univ., France
Sparse Domain Adaptation in Projection Space based on Good Similarity Function
-
June 11: Lampada Workshop, Saint-Victor sur Loire, France
Domain Adaptation with Good Similarity Functions
- Oct. 10: VideoSense Meeting, Sophia-Antipolis, France
Domain Adaptation Algorithm for Learning Classifier
Spare-Time Activities
-
I am a 2nd star black belt in Manchuria Kung Fu Follow @ManchuriaKungFu
-
I have been playing video games since I was 4 or 5 years old. I started to play on an Amstrad CPC with a cassette tape deck!